Üslü sayılar, bir sayının kendisiyle belirli sayıda çarpılmasını ifade eder. Örneğin, \( 2^3 = 2 \times 2 \times 2 = 8 \) şeklinde gösterilir. Üslü gösterimlerle çarpma ve bölme işlemlerini yaparken bazı kuralları bilmek gerekir.
Kural: Tabanları aynı olan üslü sayılar çarpılırken üsler toplanır.
Matematiksel ifadeyle:
\( a^m \times a^n = a^{m+n} \)
Örnek:
Kural: Tabanları aynı olan üslü sayılar bölünürken üsler çıkarılır.
Matematiksel ifadeyle:
\( \frac{a^m}{a^n} = a^{m-n} \)
Örnek:
Örnek:
Eğer tabanlar farklı ancak üsler aynı ise:
Örnek:
1. Aşağıdaki işlemlerden hangisinin sonucu \( 2^{10} \)'a eşittir?
a) \( 2^5 \times 2^4 \)
b) \( 2^7 \div 2^{-3} \)
c) \( (2^3)^2 \times 2^4 \)
d) \( 2^6 + 2^4 \)
e) \( 2^8 \div 2^2 \)
Cevap: b) \( 2^7 \div 2^{-3} = 2^{7-(-3)} = 2^{10} \) (Üslü sayılarda bölme işleminde tabanlar aynıysa üsler çıkarılır.)
2. \( \frac{5^4 \times 25^2}{125^3} \) işleminin sonucu kaçtır?
a) 5
b) \( \frac{1}{5} \)
c) 25
d) \( \frac{1}{25} \)
e) 1
Cevap: e) 1
Çözüm: \( 25 = 5^2 \) ve \( 125 = 5^3 \) şeklinde yazılırsa: \( \frac{5^4 \times (5^2)^2}{(5^3)^3} = \frac{5^4 \times 5^4}{5^9} = \frac{5^8}{5^9} = 5^{-1} \times 5^1 = 5^0 = 1 \).
3. Bir bakteri kültürü her 20 dakikada 2 katına çıkmaktadır. Başlangıçta 8 bakteri olduğuna göre, 2 saat sonra kaç bakteri olur? (Üslü ifadeyle gösteriniz.)
a) \( 2^9 \)
b) \( 2^{10} \)
c) \( 2^8 \)
d) \( 2^7 \)
e) \( 2^{11} \)
Cevap: a) \( 2^9 \)
Çözüm: 2 saat = 120 dakika → 120/20 = 6 bölünme. Başlangıç: \( 8 = 2^3 \), 6 kat artış: \( 2^3 \times 2^6 = 2^{9} \).
1. \( 5^3 \times 5^4 = 5^{\text{....}} \)
2. \( \frac{8^7}{8^2} = 8^{\text{....}} \)
3. \( (2^3)^4 = 2^{\text{....}} \)
4. \( 7^4 \times 7^2 = 7^8 \) (D/Y)
5. \( \frac{6^5}{6^2} = 6^3 \) (D/Y)
6. \( (5^3)^2 = 5^5 \) (D/Y)
7. \( 2^4 \times 2^3 \) işleminin sonucunu üslü olarak yazınız.
8. \( \frac{9^8}{9^5} \) işleminin sonucunu üslü olarak yazınız.
9. \( (3^2)^5 \) işleminin sonucunu üslü olarak yazınız.
10. \( 4^a \times 4^b = 4^{12} \) ise \( a + b \) kaçtır?
11. \( \frac{12^x}{12^3} = 12^4 \) ise \( x \) kaçtır?
12. \( (6^m)^n = 6^{15} \) ve \( m = 3 \) ise \( n \) kaçtır?
Cevaplar:
1: 7
2: 5
3: 12
4: Y
5: D
6: Y
7: \( 2^7 \)
8: \( 9^3 \)
9: \( 3^{10} \)
10: 12
11: 7
12: 5